Акустический расчет пример. Особенности акустического расчета на промышленных предприятиях

Общие технические и организационные методы борьбы с шумом и вибрациями на производстве

Борьба с шумом и вибрациями на промышленном предприятии - это комплекс инженерно-технических мероприятий. Выявление источников и причин возникновения шума и вибраций должно быть совмещено с регистрацией и изучением их спектров. Только опираясь на исследования амплитудно-частотных характеристик, можно наметить и провести в жизнь технические мероприятия, направленные на устранение причин возникновения вибраций и шума. Расстановка оборудования в цехах должна производиться не только с учетом технологического процесса, удобства монтажа, ремонта, но и с учетом требований обеспечения здоровых условий труда.

Шумное оборудование следует группировать отдельно и устанавливать или в изолированном помещении, или в отдельной части цеха со звукоизолирующими или экранирующими перегородками.

При разработке технологических процессов, а также при проектировании участков, цехов, оборудования выполняется расчет ожидаемых шумовых полей в местах длительного пребывания людей.

Для этого необходимо выполнить акустический расчет, который включает:

· выявление источников шума и определение их шумовых характеристик;

· выбор расчетных точек в помещении, для которых производится расчет допустимых уровней звукового давления для этих точек;

· определение ожидаемых уровней звукового давления в расчетных точках до осуществления мероприятий по снижению шума с учетом снижения уровней звуковой мощности по пути распространения шума;

· определение требуемого снижения уровня звукового давления в расчетных точках;

· выбор мероприятий для обеспечения требуемого снижения уровней звукового давления в расчетных точках;

· расчет и проектирование шумоглушащих, звукопоглощающих и звукоизолирующих конструкций (глушителей, экранов, звукопоглощающих облицовок, звукоизолирующих кожухов и т. п.).

В начале расчета необходимо выявить все источники шума в производственных помещениях, обратив особое внимание на особо мощные источники. Шумовые характеристики оборудования и установок указываются заводом - изготовителем в прилагаемой технической документации.

Расчетные точки внутри помещения выбирают по ГОСТ 12.1.050-86. ССБТ «Методы измерения шума на рабочих местах».

В зоне постоянного пребывания людей выбирают не менее двух расчетных точек на высоте 1,5 м от уровня пола или рабочей площадки. При одном источнике шума в помещении первая расчетная точка берется на рабочем месте, при нескольких однотипных источниках - на рабочем месте в средней части помещения. Вторая расчетная точка берется в зоне постоянного пребывания людей, не связанных с работой оборудования. Если имеется несколько различных источников, отличающихся друг от друга по октавным уровням звуковой мощности более чем на 15 дБ хотя бы в одной октавной полосе, то на рабочих местах берутся две расчетные точки: у источников с максимальным и минимальным уровнями шума. Для цехов с групповым размещением однотипного оборудования расчетные точки берутся в центре каждой группы. Допустимые уровни звукового давления принимаются на основании ГОСТ 12.1.003-86, ССБТ «Шум. Общие требования безопасности».


Определение ожидаемых уровней звукового давления в расчетных точках .

При проведении расчетов ожидаемых уровней звукового давления в производственных помещениях наиболее часто расчетная точка находится в том же помещении, где установлен источник шума или в соседнем помещении.

А. Расчетная точка находится в помещении с одним источником шума.

L = L P +101g(Ф/4r 2 +4/B) (2.27)

где L - уровень звукового давления, дБ;

L p - уровень звуковой мощности источника шума, дБ;

Ф - фактор направленности источника для направления в точку наблюдения;

r-расстояние от геометрического центра источника до расчетной точки,м;

В - постоянная помещения (определяется по графику зависимости от объема помещения), м 2 ;

Б. Расчетная точка находится в помещении с несколькими источниками шума.

L=10lg(іФ/4г 2 +4/Ві) (2.28)

где i = 10 0,1 Lp і - сумма уровней звуковой мощности для i - того источника шума;

Lpi -уровень звуковой мощности i - того источника, дБ;

m i - число источников, находящихся в зоне прямой видимости из расчетной точки;

п - общее число источников в помещении с учетом среднего коэффициента одновременности работы оборудования.

В . Расчетная точка расположена в изолируемом от источников шума помещении.

Если источники (или один источник) шума расположены в смежном с изолируемым помещении, а шум проникает в изолируемое помещение через ограждающие конструкции, то ожидаемые уровни в расчетной точке определяются по формуле:

L = Lр.сум - 10 lg Ви + 10 lg Sorp - R - 10 lg Вш + 6, дБ (2.29)

Lp cyм=101g Lpi (2.30)

Lp сум - суммарный уровень звуковой мощности, излучаемый всеми источниками, находящимися в рассматриваемом шумном помещении, дБ;

m - общее количество источников шума; (если источник шума один, m = 1, Lp сум = Lp, где Lp - уровень звуковой мощности этого источника);

Ви, Вш - соответственно постоянные изолируемого и шумного помещений, м 2 ;

Sorp - площадь ограждения, м 2 ;

R-звукоизолирующая способность ограждения, через которое шум проникает в изолируемое помещение, дБ.

R = 201gQ + 201gf-54, (2.31)

где Q - вес 1-го м 2 ограждения заданной толщины, кг / м 2 ;

f- частота звука, Гц.

f rp =----------- , (2.32)

где f г p - частота волнового совпадения, от которой звукоизолирующая способность не будет возрастать, Гц;

с 1 - скорость распространения звуковых волн, м/с;

h - толщина преграды, см.

Определение требуемого снижения уровней звукового давления

Требуемое снижение уровней звукового давления L определяется по формуле:

L= L-L доп ()

где L-измеренный уровень звукового давления на рабочих местах действующего предприятия, определенный в расчетных точках (см. п. 3);

L доп -допустимые по нормам уровни звукового давления, дБ по ГОСТ 12.1.003-86. «Шум. Общие требования безопасности».

Методы и средства коллективной и индивидуальной

защиты от шума

После получения требуемого снижения уровней звукового давления необходимо выбрать метод защиты от шума.

Средства защиты от шума подразделяют на средства коллективной и индивидуальной защиты.

Методы относительно снижения шума следует предусматривать на стадии проектирования промышленных объектов и оборудования. Снижение шума можно достичь только путем обесшумливания всего оборудования с высоким уровнем шума.

Работу относительно обесшумливания действующего производственного оборудования в помещении начинают с составления шумовых карт и спектров шума, оборудования и производственных помещений, на основании которых выносится решение относительно направления работы.

Борьба с шумом в источнике его возникновения – наиболее действенный способ борьбы с шумом. Создаются малошумные механические передачи, разрабатываются способы снижения шума в подшипниковых узлах, вентиляторах.

Архитектурно-планировочный аспект коллективной защиты от шума – предполагается снижение уровня шума путем использования экранов, территориальных разрывов, шумозащитных конструкций, зонирования и районирования источников и объектов защиты, защитных полос озеленения.

Организационно-технические средства защиты от шума связаны с изучением процессов шумообразования промышленных установок и агрегатов, транспортных машин, технологического и инженерного оборудования, а также с разработкой более совершенных малошумных конструкторских решений, норм предельно допустимых уровней шума станков, агрегатов, транспортных средств и т.д.

Акустические средства защиты от шума подразделяются на средства звукоизоляции, звукопоглощения и глушители шума.

Снижение шума звукоизоляцией. Суть этого метода заключается в том, что шумоизлучающий объект или несколько наиболее шумных объектов располагаются отдельно, изолировано от основного, менее шумного помещения звукоизолированной стеной или перегородкой. Звукоизоляция также достигается путем расположения наиболее шумного объекта в отдельной кабине. Звукоизоляция достигается также путем расположения оператора в специальной кабине, откуда он наблюдает и руководит технологическим процессом. Звукоизолирующий эффект обеспечивается также установлением экранов и колпаков, что защищает рабочее место и человека от непосредственного влияния прямого звука.

Звукопоглощение достигается за счет перехода колебательной энергии в теплоту вследствие потерь на трение в звукопоглотителе. Звукопоглощающие материалы и конструкции предназначены для поглощения звука как в помещениях с источником, так и в соседних помещениях. Звукопоглощение используется при акустической обработке помещений.

Акустическая обработка помещения предусматривает покрытие потолка и верхней части стен звукопоглощающим материалом. Дополнительно к потолку могут подвешиваться звукопоглощающие щиты, конусы, кубы; устанавливаются резонаторные экраны, т.е. искусственные поглотители. Эффект акустической обработки больше в низких помещениях (где высота не превышает 6м). Акустическая обработка позволяет снизить шум на 8 дБА.

Уровень звука после применения звукопоглощающей облицовки рассчитывают по формуле:

L=10, (2.32)

А 1 =В ш S/ В ш +S, (2.35)

S – общая площадь всех поверхностей помещения


Акустический дизайн (расчет) - вид проектных работ, выполняемый методом компьютерного моделирования. Результатом являются рекомендации по отделке объекта специальными материалами для приведения акустических параметров к оптимальным, в соответствии с назначением объекта. Эти рекомендации включают в себя типы и площади необходимых отделочных материалов, дверей, штор, а также способы их крепления и расположения в пространстве помещения. Проектирование на раннем этапе строительства объекта позволяет с высокой точностью добиться желаемого результата и в конечном итоге экономит средства заказчика.

В случае расчетов для театров, концертных залов, кинотеатров, студий звукозаписи рекомендации могут касаться архитектурных изменений (форма стен, потолка). Также в зрительных залах учитывается влияние материалов кресел для зрителей.

Для расчета необходимых материалов применяется расширенная эмуляция акустической среды на основе математической трехмерной модели объекта. Для выполнения моделирования необходимо предоставить данные:

  1. Предназначение помещений (типы проводимых работ или мероприятий, желательно с указанием музыкальных жанров для концертных залов и студий).
  2. Все характерные планы, разрезы, материалы стен и полов с учетом финишных покрытий (ковролин по дереву, линолеум по бетону, обои на штукатурке и т.д.), а также инженерные конструкции (короба вентиляции над подвесным потолком, ниши батарей отопления и т.д.), так же необходимо точное положение окон и состав пакетов.
  3. Если есть предварительный дизайн помещения, то необходимо согласование применяемых в отделке звукопоглощающих материалов.
  4. Если объект сложной формы или чрезвычайно критичен к требуемой акустической обстановке (студии звукозаписи, комнаты прослушивания и т.п.), то проводятся замеры параметров текущей среды на объекте до того как приступить к расчетам.

В итоге заказчик получает описание модели объекта с расчетами его основных акустических характеристик:

  • C50 - Индекс речевой ясности;
  • C80 - Индекс музыкальной ясности;
  • STI - Коэффициент речевой разборчивости (индекса передачи речи);
  • EDT - Время затухания ранних отражений;
  • RT - Время реверберации;
  • D50 - Индекс четкости звука;
  • G - Сила звука;
  • моделирование отражений;
  • и прочие

В случае концертного зала, кинотеатра и подобных помещений, в которых установлена профессиональная система звукоусиления, расчет делается с учетом воздействия этой системы и рассчитывается оптимальное положение и углы поворота громкоговорителей по отношению к слушателям. Так же акустический расчет включает в себя спецификацию рекомендуемых к применению звукопоглощающих материалов с рекомендациями по их размещению и способу крепления для каждой поверхности отдельно (стены, пол, потолок).

При необходимости, после монтажа проводится измерение параметров среды и особенностей распространения и поглощения звука, с целью подтверждения правильности монтажа и расположения запроектированных материалов, а также подтверждения результатов математического моделирования.

Некомфортная акустическая обстановка быстро вызывает утомление, раздражение и невосприимчивость информации.

Акустический дизайн применим ко всем помещениям, в которых важно качество звука, комфортное и верное восприятие звуковой информации - от домашних кинотеатров и ресторанов, до клубов и конференц-залов. И обязательно применяется при проектировании концертных площадок, филармоний, театров, кинотеатров, стадионов, храмов.

В общем, для всех заведений, для которых важно, чтобы их посетители чувствовали себя комфортно, а музыка и речь звучащая внутри не вызывала желания побыстрее уйти. Для домашних кинотеатров акустический дизайн дает возможность получить звучание системы ничуть не хуже большого кинотеатра.

Неграмотное размещение акустических материалов из-за отсутствия проекта или их отсутствие вообще, как правило, приводит к тому, что акустическая обстановка в помещении не позволит адекватно воспринимать звуковую информацию. Чаще всего отсутствие такого проектирования приводит к увеличению общей стоимости работ. Так как выясняется, что эксплуатировать объект с таким распространением звуковых волн невозможно, и все равно приходится выполнять необходимые расчеты и дорабатывать интерьер для приведения объекта к приемлемым параметрам. Только уже в экстренном порядке, потому что срок сдачи близко или прошел.

Для того что бы заказать услугу или получить подробную консультацию, обращайтесь к нам по телефонам.

Акустичекие расчеты

Среди проблем оздоровления окружающей среды борьба с шумами является одной из актуальнейших. В крупных городах шум является одним из основных физических факторов, формирующих условия среды обитания.

Рост промышленного и жилищного строительства, бурное развитие различных видов транспорта, все большее применение в жилых и общественных зданиях сантехнического и инженерного оборудования, бытовой техники привели к тому, что уровни шума в селитебных зонах города стали сравнимы с уровнями шумов на производстве.

Шумовой режим крупных городов формируется главным образом автомобильным и рельсовым транспортом, составляющим 60-70% всех шумов.

Заметное влияние на уровень шума оказывает увеличение интенсивности воздушных перевозок, появление новых мощных самолетов и вертолетов, а также железнодорожный транспорт, открытые линии метро и метро мелкого заложения.

Вместе с тем, в некоторых крупных городах, где предпринимаются меры по улучшению шумовой обстановки наблюдается снижение уровней шума.

Шумы бывают акустические и неакустичекие, какова их разница?

Акустический шум определяется как совокупность различных по силе и частоте звуков, возникающих в результате колебательного движения частиц в упругих средах (твердых, жидких, газообразных).

Неакустические шумы - Радиоэлектронные шумы - случайные колебания токов и напряжений в радиоэлектронных устройствах, возникают в результате неравномерной эмиссии электронов в электровакуумных приборах (дробовой шум, фликкер-шум), неравномерности процессов генерации и рекомбинации носителей заряда (электронов проводимости и дырок) в полупроводниковых приборах, теплового движения носителей тока в проводниках (тепловой шум), теплового излучения Земли и земной атмосферы, а также планет, Солнца, звёзд, межзвёздной среды и т. д. (шумы космоса).

Акустический расчёт, расчет уровня шума.

В процессе строительства и эксплуатации различных объектов проблемы борьбы с шумом являются неотъемлемой частью охраны труда и защиты здоровья населения. Выступать источниками могут машины, транспортные средства, механизмы и другое оборудование. Шум, его величина воздействия и вибраций на человека зависит от уровня звукового давления, частотных характеристик.

Под нормированием шумовых характеристик понимают установление ограничений на значения этих характеристик, при которых шум, воздействующий на людей, не должен превышать допустимых уровней, регламентированных действующими санитарными нормами и правилами.

Целями акустического расчета являются:

Выявление источников шума;

Определение их шумовых характеристик;

Определение степени влияния источников шума на нормируемые объекты;

Расчет и построение индивидуальных зон акустического дискомфорта источников шума;

Разработка специальных шумозащитных мероприятий, обеспечивающих требуемый акустический комфорт.

Установка систем вентиляции и кондиционирования уже считается естественной потребностью в любом здании (будь оно жилое или административное), акустический расчет должен выполняться и для помещений подобного типа. Так, в случае не проведения расчета уровня шума, может оказаться, что в помещении очень низкий уровень звукопоглощения, а это очень усложняет процесс общения людей в нем.

Поэтому прежде чем устанавливать в помещении системы вентиляции, провести акустический расчет нужно обязательно. Если окажется, что для помещения характерны плохие акустические свойства, необходимо предложить провести ряд мероприятий, по улучшению акустической обстановки в помещении. Поэтому акустические расчеты выполняются и на установку бытовых кондиционеров.

Акустический расчет чаще всего проводится для объектов, которые имеют сложную акустику или отличаются повышенным требованиям к качеству звука.

Звуковые ощущения возникают в органах слуха при воздействии на них звуковых волн в диапазоне от 16 Гц до 22 тыс. Гц. Звук распространяется в воздухе со скоростью 344 м/с, за 3 сек. 1 км.

Величина порога слышимости зависит от частоты ощущаемых звуков и равна 10-12 Вт/м 2 на частотах близких 1000 Гц. Верхней границей является порог болевого ощущения, который в меньшей степени зависит от частоты и лежит в пределах 130 - 140 дБ (на частоте 1000 Гц по интенсивности 10 Вт/м 2, по звуковому давления).

Соотношение уровня интенсивности и частоты определяет ощущение громкости звука, т.е. звуки, имеющие различную частоту и интенсивность, могут оцениваться человеком как равногромкие.

При восприятии звуковых сигналов на определенном акустическом фоне может наблюдаться эффект маскировки сигнала.

Эффект маскировки может отрицательно сказываться в акустических индикаторах и может быть использован для улучшения акустической обстановки, т.е. в случае маскировки высокочастотного тона низкочастотным, который менее вреден для человека.

Порядок выполнения акустического расчета.

Для выполнения акустического расчета потребуются следующие данные:

Размеры помещения, для которого будет проводиться расчет уровня шума;

Основные характеристики помещения и его свойства;

Спектр шума от источника;

Характеристика преграды;

Данные о расстоянии от центра источника шума до точки акустического расчета.

При расчете, для начала определяются источники шума и их характерные свойства. Далее на исследуемом объекте выбираются точки, в которых будут проводиться расчеты. В выбранных точках объекта проводится расчет предварительного уровня звукового давления. Основываясь на полученных результатах, выполняется расчет по снижению шума до требуемых норм. Получив все необходимые данные, выполняется проект по разработке мероприятий, благодаря которым будет снижен уровень шума.

Правильно выполненный акустический расчет является залогом отличной акустики и комфорта в помещении любого размера и конструкции.

На основе выполненного акустического расчета можно предлагать следующие мероприятия для снижения уровня шума:

* установка звукоизолирующих конструкций;

* использование уплотнений в окнах, дверях, воротах;

* использование конструкций и экранов, которые поглощают звук;

*осуществление планировки и застройки селитебной территории в соответствии со СНиП;

* применение глушителей шума в вентиляционных системах и системах кондиционирования.

Проведение акустического расчета.

Работы по расчету уровней шума, оценки акустического (шумового) воздействия, а также проектирование специализированных шумозащитных мероприятий, должны осуществляться специализированной организацией, имеющей соответствующую область.

шум акустический расчет измерение

В самом простом определении основная задача акустического расчета - это оценка уровня шума, создаваемого источником шума в заданной расчетной точке с установленным качеством акустического воздействия.

Процесс проведения акустического расчета состоит из следующих основных этапов:

1. Сбор необходимых исходных данных:

Характер источников шума, режим их работы;

Акустические характеристики источников шума (в диапазоне среднегеометрических частот 63-8000 Гц);

Геометрические параметры помещения, в котором расположены источники шума;

Анализ ослабленных элементов огорождающих конструкции, через которые шум будет проникать в окружающую среду;

Геометрические и звукоизоляционные параметры ослабленных элементов огорождающих конструкций;

Анализ близлежащих объектов с установленным качеством акустического воздействия, определений допустимых уровней звука для каждого объекта;

Анализ расстояний от внешних источников шума до нормируемых объектов;

Анализ возможных экранирующих элементов на пути распространения звуковой волны (застройка, зеленые насаждения и т.д.);

Анализ ослабленных элементов огорождающих конструкций (оконные проемы, двери и т.д.), через которые шум будет проникать в нормируемые помещения, выявление их звукоизоляционной способности.

2. Акустический расчет производится на основании действующих методических указаний и рекомендаций. В основном это «Методики расчета, нормативы».

В каждой расчетной точке необходимо производить суммирование всех имеющихся источников шума.

Результатом акустического расчета являются некие значения (дБ) в октавных полосах со среднегеометрическими частотами 63-8000 Гц и эквивалентное значение уровня звука (дБА) в расчетной точке.

3. Анализ результатов расчета.

Анализ полученных результатов осуществляется сравнением значений, полученных в расчетной точке с установленными Санитарными нормами.

При необходимости, следующим этапом проведения акустического расчета может быть проектирование необходимых шумозащитных мероприятий, которые позволят снизить акустическое воздействие в расчетных точках до допустимого уровня.

Проведение инструментальных измерений.

Помимо акустических расчетов, можно провести расчет инструментальных измерений уровней шума любой сложности, в том числе:

Измерение шумового воздействия существующих систем вентиляции и кондиционирования для офисных зданий, частных квартир и т.д.;

Осуществление измерений уровней шума для аттестации рабочих мест;

Проведение работ по инструментальному измерению уровней шума в рамках проекта;

Проведение работ по инструментальному измерению уровней шума в рамках технических отчетов при утверждении границ СЗЗ;

Осуществление любых инструментальных измерений шумового воздействия.

Проведение инструментальных замеров уровней шума производится специализированной мобильной лабораторией с применением современного оборудования.

Сроки выполнения акустического расчета. Сроки выполнения работы зависят от объема расчетов и измерений. Если необходимо произвести акустический расчет для проектов жилых застроек или административных объектов, то они выполняются в среднем 1 - 3 недели. Акустический расчет для крупных или уникальных объектов (театры, органные залы) занимает больше времени, основываясь на предоставленных исходных материалах. Кроме того, на срок работы во многом влияют количество исследуемых источников шума, а также внешние факторы.

Защита помещений от шума в настоящее время особенно актуальна, поскольку традиционные ограждения уступили место более легким конструкциям индустриального типа, к тому же уровень шума по мере развития промышленности и транспорта постоянно возрастает.

Звук представляет собой колебательное движение упругой среды (газообразной, жидкой и твердой). В упругих средах звук распространяется с определенной скоростью с , зависящей главным образом от свойств среды. Скорость звука в воздухе около 340м/с , в воде 1450м/с , в стали 5100м/с . Ухо человека воспринимает звуки в диапазоне частот от 20 до 20 000 Гц .

Интервал частот, ограниченный двумя частотами, из которых верхняя вдвое больше предыдущей нижней, называют октавой.

При известной скорости звука с частота f определяет длину волны λ и период колебаний Т:

λ=с/f; Т=λ /с. (21)

Одной из основных физических характеристик звука является сила, или интенсивность, звука I , которая определяется как количество звуковой энергии, переносимой звуковой волной в 1с через площадку в 1см 2 (или м 2 ), перпендикулярную направлению движения звуковой волны. Измеряют интенсивность звука в ваттах на см 2 (или на м 2 ).

Область звуковых колебаний, воспринимаемых человеком, показана на рис. 21, из которого следует, что пороги слышимости, болевых ощущений зависят не только от силы звука, но и от частоты. Звуки одинаковой силы, но разной частоты воспринимаются как различные по громкости. В связи с чем для количественной оценки восприятия звука введено понятие эталона звука по частоте. В качестве эталона сравнения звуков различны частот принят звук частотой 1000 Гц, в полосе которого органы слуха человека обладают наибольшей чувствительностью.

В акустике принята логарифмическая система единиц. Кроме чисто математических удобств это обусловлено тем, что по гипотезе Вебера- Фехнера восприятие звука человеком пропорционально не абсолютному изменению силы звука, а логарифму этого изменения.

В логарифмической системе единиц десятичный логарифм отношения какой-либо величины А к величине А 0 , принятой за эталон сравнения, называют уровнем величины А, измеряемой в беллах (Б ), и обозначают через L A:



L A =lg(A/A 0), (22)

Белл довольно крупная единица. В акустике принята единица, в десять раз меньшая, называемая децибелом (дБ ). Уровень величины А в децибелах выражают так:

L A = 10lg(A/A o), (23)

При определении уровней силы звука за эталон сравнения принята сила звука J 0 на пороге слышимости при частоте звука 1000Гц , равная 10 16 Вт/см 2 . Таким образом, уровень силы звука, дБ , выражают формулой:

L J = 10lg(J/J o). (24)

Важной физической характеристикой звука является звуковое давление Р, определяемое как разность между мгновенным значением полного давления в звуковой волне и средним в данной точке при отсутствии звука. При расчетах пользуются среднеквадратичным звуковым давлением, которое для чистого тона определяют по формуле:

Р ср = Р max / , (25)

Сила звука пропорциональна квадрату звукового давления:

J = P 2 ср / ρc, (26)

где ρc - произведение плотности среды на скорость распространения звука в ней, называемое удельным акустическим сопротивлением среды.

Уровень силы звука через уровень звукового давления выражают по формуле:

L J = 20lg(Р/Р o), (27)

где Р - звуковое давление звука данной частоты, Па (дин);

Р 0 - то же звука, частотой 1000Гц на пороге слышимости, равное

2·10 -5 Па (2·10 -4 дин/см 2 ).

Различают два вида звуков: воздушные (возникающие и распространяющиеся в воздухе) и ударные (распространяющиеся в твердых телах при механическом воздействии на них). Воздушный шум передается через ограждения (главным образом, щели, трещины, отверстия или сквозные поры); он возникает также вследствие колебаний тонкостенных конструкций. Ударный звук передается по конструкциям в зависимости от степени однородности материала и его модуля упругости.

Изоляцию ограждением воздушного шума R в оценивают по снижению уровня шума при прохождении через ограждение (с учетом звукового поглощения защищаемого помещения):

R в = L 1 - L 2 + lg (S/A), (25)

где L 1 и L 2 - средние уровни звукового давления до и после прохождения звука через ограждение;

S - площадь ограждающей конструкции;

А - общее звуковое поглощение защищаемого помещения.

Ударный звук особенно передается через перекрытия. Он возникает в самой конструкции. Поэтому изоляцию перекрытиями ударного шума оценивают по уровню шума над перекрытием при стандартном ударном воздействии на перекрытие. В качестве последнего принимают удары свободно падающего с высоты 4см тела массой 0,5кг с частотой 10 ударов в 1с .

Для этого случая определяют приведенный уровень ударного шума над перекрытием:

L п = L y -10lg(A 0 /A), (26)

где L y - уровень ударного шума относительно порогового;

A 0 - стандартное звуковое поглощение, равное 10м 2 ;

А - общее звуко­вое поглощение помещения.

Звукоизоляция ограждения зависит не только от массы конструкции, но и от частоты изолируемого звука. Поэтому для оценки звукоизолирующей способности ограждения необходимо знать частотную характеристику - кривую, показывающую зависимость звукоизоляции конструкции в децибелах от частоты изолируемого шума в пределах октавных полос со среднегеометрическими частотами в 63, 125, 250, 500, 1000, 2000, 4000 и 8000Гц .

За расчетные и нормируемые параметры звукоизоляции ограждающих конструкций принимают так называемый индекс изоляции воздушного шума ограждающей конструкцией И в в дБ и индекс приведенного уровня ударного шума под перекрытием И у.

Для определения индексов изоляции сравнивают измеренные или рассчитанные характеристики с нормативными, приведенными на рис 25.

Индекс изоляции воздушного шума ограждающей конструкции обозначают формулой:

И в = 50 + Δ в, (27)

А индекс приведенного уровня ударного шума под перекрытием:

И у =7О - Δ у. (28)

В этих формулах значения 50 и 70дБ соответствуют индексам изоляции воздушного шума (50дБ ) и индексу приведенного уровня ударного шума под перекрытием (70дБ ) нормативных частотных характеристик. Поправки Δ в и Δ у определяют как средние отклонения частотных характеристик изоляции данного ограждения от нормативных.

а) изоляции воздушного шума ограждающей конструкции;

б) приведенного уровня ударного шума под перекрытием

Рис. 25. Нормативные частотные характеристики

В ориентировочных расчетах индекс изоляции воздушного шума однослойными ограждениями объемной массой от 100 до 1000кг/м 2 можно определить в дБ по формулам:

И в = 23 lgKm- 10 дБ при m> 200 кг/м 2 ; (29)

И в = 13 lg Km + 13 дБ при m < 200 кг/м 2 , (30)

где m - масса 1м 2 ограждения;

K -коэффициент, принимаемый в зависимости от материала и типа конструкции (для сплошных ограждающих конструкций из материалов плотностью более 1800 кг/м 3 K = 1; для ограждающих конструкций из материалов плотностью 1200-1300 кг/"м 3 из бетонов на гипсовом вяжущем K = 1,25).

Для ограждающих конструкций с круглыми пустотами из железобетона и бетона плотностью более 1800кг/м 3 коэффициент K определяют по формуле:

K = 1,86 / b h 3 пр , (31)

где J - момент инерции сечения, м 4 ;

b - ширина его, м;

h пр - приведенная толщина сечения, м.

Для ограждений из бетонов на пористых заполнителях и цементном вяжущем коэффициент К следует определять по формуле:

К = 2,26 /ρ, (32)

где Е - модуль упругости материала, кгс/м 2 ;

ρ - плотность материала, кг/м 3 .

Нормативные индексы изоляции воздушного шума ограждающими конструкциями И н в и приведенного уровня ударного шума под перекрытием И н у жилых зданий приведены в табл. 37.

Для повышения звукоизолирующей способности стен, перегородок и перекрытий без увеличения их массы целесообразно применять раздельные конструкции со сплошной воздушной прослойкой без жесткой связи между элементами ограждения.

Звукоизоляционные свойства ограждения при наличии сплошной воздушной прослойки повышаются в связи с тем, что воздух упруго воспринимает колебания одной стенки и передает их второй стенке ослабленными.

С увеличением толщины воздушной прослойки звукоизоляция также увеличивается, однако из-за необходимости ограничивать общую толщину ограждения воздушный промежуток обычно делают не более 60 мм.

Для звуковой изоляции междуэтажных перекрытий применяют упругие прокладки, которые гасят звуковые колебания, возникающие при ударах.

Таблица 37

Нормативные величины звукоизолирующей способности ограждающих конструкций жилых зданий

Акустика в дизайнерских решениях . Звук, возникший в помещении, частью поглощается, а частью отражается ограждающими конструкциями, оборудованием, зрителями. Уровнями процессов отражения и поглощения звука определяются акустические свойства помещения. Для хорошей акустики необходимо обеспечить по возможности равномерное распределение звука в объеме помещения, особенно в зоне зрителей. Процесс затухания отраженных звуков должен идти так, чтобы не искажался прямой звук от источника, а усиливался при восприятии слушающими.

Одним из важнейших показателей акустических свойств помещений является реверберация.

Реверберацией называют наличие остаточного звучания в помещении после прекращения основного звука вследствие многократных отражений звуковых волн от поверхностей стен, потолка и др.

Продолжительность реверберации, или время затухания отраженного звука до порога слышимости, зависит как от акустических свойств помещения, так и от мощности источника звука. Для акустического расчета и проектирования требуется характеристика, которая зависит только от акустических свойств помещения. Такой характеристикой является скорость затухания отраженного звука, или стандартная реверберация.

Под стандартной реверберацией Т ст понимают то время, за которое плотность звуковой энергии отраженного звука уменьшается в 1 млн раз или уровень звукового давления снижается на 60дБ.

При продолжительной реверберации помещение становится гулким, при весьма короткой - глухим. Время реверберации зависит от объема и общего звукопоглощения помещения и объектов, находящихся в нем, а также от частоты звука. Опытным путем установлен оптимум стандартной реверберации T опт - такая длительность ее, при которой создаются наилучшие условия слышимости в данном помещении. Оптимум реверберации в зависимости от объема зала указан в табл. 38.

Оптимальное время реверберации T опт для частоты 500Гц можно приближенно определить по формуле:

T опт =K lgV, (33)

где V - объем помещения;

К - коэффициент, принимаемый:

0,41 - для оперных театров и концертных залов;

0,36 - для драматиче­ских театров;

0,29 - для кинотеатров и аудиторий.

В диапазоне низких частот оптимальную реверберацию можно увеличить на 20-30 %. А в диапазоне высоких частот – уменьшить на 10-15 %.

Таблица 38

Оптимальное время стандартной реверберации Т опт

Объем помещения, м3 Т опт, с, при Объем помещения, м3 Т опт, с, при
Частоте 125 Гц Частоте 500 Гц Частоте 125 Гц Частоте 500 Гц
1,2 1,0 1 000 1,45 1,2
1,3 1,1 1 500 1,55 1,25
1,35 1,15 2 000 1,6 1,28
3 000 1,75 1,35 8 000 2,15 1,5
4 000 1,8 1,38 9 000 2,25 1,53
5 000 1,9 1,4 10 000 2,3 1,55
6 000 2,0 1,45 15 000 2,4 1,6
7 000 2,05 1,48 20 000 2,45 1,63

Примечание. Промежуточные значения времени Т опт определяют по интерполяции.

Для обеспечения требуемой акустики в помещении используют материалы, хорошо поглощающие звук. Поглощение звука характеризуется коэффициентом звукопоглощения α, выражающим отношение звуковой энергии, поглощенной поверхностью ограждения, к звуковой энергии, падающей на него. За единицу поглощения звука принят Сэбин, характеризующий полное поглощение звука поверхностью, отнесенное к единице площади (поглощение 1м 2 открытого окна).

Коэффициент звукопоглощения материала изменяется в зависимости от частоты звуков и направления звуковой волны относительно поверхности. В большинстве случаев звуки низкой частоты поглощаются материалом хуже, чем высоких частот.

Реверберация увеличивается с увеличением объема помещения и уменьшением величины общего поглощения помещения. Время реверберации Т сг должно быть равно оптимальному Т опт . Так как коэффициенты звукопоглощения обычных строительных материалов (штукатурка, кирпич, бетон, дерево) сравнительно невелики, то время стандартной реверберации зрительных залов, как правило, превышает время оптимальной реверберации. В связи с этим для уменьшения гулкости часть ограждений зала облицовывают звукопоглощающими материалами и устанавливают резонаторы.

При акустическом проектировании зрительных залов реверберацию определяют для частот в 125, 500 и 2000Гц . Расчет акустики зала рекомендуется вести с учетом заполнения его зрителями на 70%.

Для хорошего восприятия звука в помещении требуется равномерное распределение звуковой энергии путем регулирования отражения звука.

Акустические качества помещений характеризуются степенью разборчивости речи во всех его точках. Критерием служит слоговая артикуляция , показывающая процент правильно воспринятых слушателем слогов. Разборчивость считается отличной при 96% правильно воспринимаемых слогов, хорошей 96-85%, удовлетворительной 85-75%, трудноразборчивой 76-65%, недопустимой 65% и ниже.

Артикуляция речи определяется по формуле:

А = 0,96 К 1 К 2 К 3 К 4 , (34)

где К 1 - коэффициент, учитывающий уровень громкости звука;

К 2 - коэффициент, учитывающий время реверберации;

К 3 - коэффициент, учитывающий шумовой фон в помещении;

К 4 - коэффициент, учитывающий форму помещения (в прямоугольных и секториальных помещениях 1,0; в малых помещениях с большим звукоотражением 1,06).

Для расчетов можно пользоваться табл. 39.

Таблица 39

Значения коэффициентов К 1 , К 2 и К 3 и процентная слоговая артикуляция

При расчетах времени реверберации следует учитывать, что фактическое звукопоглощение всегда превышает расчетное за счет неучитываемых расчетом локальных (обычно сосредоточенных) звукопоглощений.

Учитывать добавочное звукопоглощение можно путем введения среднего коэффициента добавочного звукопоглощения, который рекомендуется принимать для частот 500-2000 Гц равным α = 0,04.

Пример 7

Для конференц-зала с размерами 12х24 и высотой 6 м рассчитать и оценить артикуляцию.

1. Определяем время реверберации.

Оптимальное время реверберации зависит от длины пробегов отраженных звуков, следовательно, от объема помещения и назначения. Его приближенно можно определить по формуле:

Т опт = К · lgV,

где Т опт – оптимальное время реверберации для звуков силой 500Гц ;

V – объем помещения, м 3 ;

К – коэффициент, зависящий от назначения помещений, принимаемый равным для оперных и концертных залов 0,41; драматических залов 0,36; кинозалов и аудиторий 0,29.

V = 12 х 24 х 6 = 1728 м 3

Следовательно,

Т опт = К· lg V = 0,41· lg1728 = 0,41 ·3,237 = 1,33с

2. Определяем артикуляцию:

При Т = 1,33 сек коэффициенты К 1 = 0,95; К 2 = 0,95; К 3 = 0,83; К 4 = 1,0

А = 0,96 х 0,95 х 0,95 х 0,83 х 1,0 х 100% = 75,6 %.

ЗАДАНИЕ 6

Для помещения, характеристики которого заданы в табл. 40, рассчитать и оценить артикуляцию.

Таблица 40

Индивидуальные варианты задания

№ варианта Размеры, м Назначение помещения Значение К 4
Длина Ширина Высота
Аудитория 1,06
Читальный зал 1,06
Аудитория
Лекционный зал
Конференц-зал
Концертный зал
Оперный зал
Кинозал
Лекционный зал
Драматический зал
Кинозал
Концертный зал
Драматический зал 1,06
Кинозал
Оперный зал
Аудитория 1,06
Читальный зал 1,06
Аудитория
Лекционный зал 1,06
Конференц-зал 1,06
Концертный зал
Оперный зал
Кинозал
Лекционный зал
Драматический зал
Кинозал
Концертный зал
Драматический зал
Кинозал
Оперный зал

ЛИТЕРАТУРА

1 Архитектурная физика: Учебник для вузов / Под ред. Н.В. Оболенского. – М. : Архитектура – С, 2005.

2 Дятков С.В., Михеев А.П. Архитектура промышленных зданий. – М.: АВС, 1998.

3 Защита от шума в градостроительстве / Осипов Г.Л., Коробков В.Е. и др. – М.: Стройиздат, 1993. (Справочник проектировщика).

4 Ковригин С.Д., Крышов С.П. Архитектурно – строительная акустика. – М.: Высшая школа, 1986.

5 Краткий справочник архитектора (Гражданские здания и сооружения) Коваленко Ю.Н., Шевченко В.П. - Киев: Будiвельник, 1975.

6 Лицкевич В.К. Жилище и климат. – М.: Стройиздат, 1984.

8 СНиП 2.01.01-82. Строительная климотология и геофизика.

9 Строительная климотология: Справочное пособие к СНиПу. – М.: Стройиздат, 1990.

10 СНиП II – 3 – 79*. Строительная теплотехника. – М.: Стройиздат, 1979.

11 СНиП II – 4 – 79. Естественное и искусственное освещение.

12 СНиП II – 12 – 77. Глава «Защита от шума». – М. Стройиздат, 1978.

Ресурсы Интернет.

  • 1.1.5.Государственные нормативные акты об охране труда
  • 1.1.6.Ответственность за нарушение законодательства об охране труда
  • 1.1.7. Государственный надзор и общественный контроль за охраной труда
  • 1.1.8. Общественный контроль за соблюдением законодательства об охране труда
  • Полномочия и права профсоюзов в осуществлении контроля за соблюдением законодательства об охране труда
  • Уполномоченные наемными работниками лица по вопросам охраны труда
  • 1.1.9. Организационные вопросы охраны труда. Органы государственного управления охраной труда
  • 1.1.10. Служба охраны труда предприятия
  • 1.1.11. Комиссия по вопросам охраны труда предприятия
  • 1.1.12. Обучение по вопросам охраны труда
  • 1.1.13. Обучение по вопросам охраны труда при приеме на работу и в процессе работы
  • 1.1.14. Инструктажи по вопросам охраны труда
  • Порядок проведения инструктажей для работников
  • 1.1.15. Стажировка (дублирование) и допуск работников к работе
  • 1.1.16. Производственный травматизм и профессиональные заболевания
  • Специальное расследование несчастных случаев.
  • Расследование и учет хронических профессиональных заболеваний и отравлений.
  • Расследование и учет аварий *
  • 1.1.17. Методы анализа производственного травматизма и профзаболеваемости
  • Основные причины производственного травматизма и профзаболеваемостии мероприятия по их предупреждению
  • 1.1.18. Государственное страхование от несчастного случая и профессионального заболевания
  • Раздел № 2. Основы физиологии, гигиены труда и производственной санитарии
  • 2.1.Общие положения
  • 2.1.1. Законодательство в области гигиены труда
  • 2.1.2. Физиологические особенности различных видов деятельности
  • 2.1.3. Гигиеническая классификация труда
  • 2.2. Микроклимат производственных помещений
  • 2.2.1.Влияние параметров микроклимата на организм человека
  • 2.2.2. Нормализация параметров микроклимата
  • 2.3. Загрязнение воздуха производственных помещений
  • 2.3.1. Влияние вредных веществ на организм человека
  • 2.3.2. Нормирование вредных веществ
  • 2.3.3. Основные мероприятия по нормализации воздушной среды
  • 2.4. Вентиляция производственных помещений
  • 2.4.1. Назначение и классификация систем вентиляции
  • 2.4.2. Естественная вентиляция
  • 2.4.3. Искусственная вентиляция
  • Местная вентиляция
  • Методы расчета систем искусственной вентиляции
  • Определение выделений тепла. Расчет воздухообмена при проектировании общеобменной вентиляции и кондиционирования воздуха.
  • Характеристика остекления
  • 2.5. Организация производственного освещения
  • 2.5.1. Общие требования и рекомендации по организации производственного освещения Основные светотехнические понятия и единицы
  • 2.5.2. Организация естественного освещения
  • 2.5.3. Организация искусственного освещения
  • Расчет искусственного освещения
  • Методы расчета искусственного освещения.
  • 2.6.Производственный шум и методы борьбы с ним
  • Нормирование шума
  • 2.6.1. Общие методы борьбы с производственным шумом
  • Акустический расчет
  • 3 Раздел Основы техники безопасности
  • 1. Безопасность технологических процессов.
  • 2. Безопасность производственного оборудования.
  • 3. Обеспечение электробезопасности на промышленных предприятиях.
  • 4.Защита от статического электричества, в том числе и от атмосфер­ного электричества.
  • 5.Безопасность устройства и эксплуатации подъемно-транспортного оборудования.
  • 6. Безопасность использования сосудов и аппаратов, работающих под давлением (баллоны, паровые и водогрейные котлы, компрессорные установки, цистерны и др.).
  • Раздел 4. Пожарная безопасность
  • 4.1. Основные сведения о пожарной и взрывной безопасности
  • 4.2. Пожароопасность материалов и веществ
  • 4.3.Категории помещений и зданий и классы зон по пожарной и взрывной опасности
  • 4.3.1 Категории помещений и зданий по пожарной и взрывной опасности по онтп 24-86
  • 4.4. Тушение пожаров
  • Список рекомендуемой литературы
  • Раздел 1 Правовые и организационные вопросы охраны труда……..11
  • Раздел 2 Основы физиологии, гигиены труда и
  • Раздел 3 Основы техники безопасности……………………….......151
  • Раздел 4 Пожарная безопасность……………………………….....164
  • Акустический расчет

    Общие технические и организационные методы борьбы с шумом и вибрациями на производстве

    Борьба с шумом и вибрациями на промышленном предприятии - это комплекс инженерно-технических мероприятий. Выявление источников и причин возникновения шума и вибраций должно быть совмещено с регистрацией и изучением их спектров. Только опираясь на исследования амплитудно-частотных характеристик, можно наметить и провести в жизнь технические мероприятия, направленные на устранение причин возникновения вибраций и шума. Расстановка оборудования в цехах должна производиться не только с учетом технологического процесса, удобства монтажа, ремонта, но и с учетом требований обеспечения здоровых условий труда.

    Шумное оборудование следует группировать отдельно и устанавливать или в изолированном помещении, или в отдельной части цеха со звукоизолирующими или экранирующими перегородками.

    При разработке технологических процессов, а также при проектировании участков, цехов, оборудования выполняется расчет ожидаемых шумовых полей в местах длительного пребывания людей.

    Для этого необходимо выполнить акустический расчет, который включает:

      выявление источников шума и определение их шумовых характеристик;

      выбор расчетных точек в помещении, для которых производится расчет допустимых уровней звукового давления для этих точек;

      определение ожидаемых уровней звукового давления в расчетных точках до осуществления мероприятий по снижению шума с учетом снижения уровней звуковой мощности по пути распространения шума;

      определение требуемого снижения уровня звукового давления в расчетных точках;

      выбор мероприятий для обеспечения требуемого снижения уровней звукового давления в расчетных точках;

      расчет и проектирование шумоглушащих, звукопоглощающих и звукоизолирующих конструкций (глушителей, экранов, звукопоглощающих облицовок, звукоизолирующих кожухов и т. п.).

    В начале расчета необходимо выявить все источники шума в производственных помещениях, обратив особое внимание на особо мощные источники. Шумовые характеристики оборудования и установок указываются заводом - изготовителем в прилагаемой технической документации.

    Расчетные точки внутри помещения выбирают по ГОСТ 12.1.050-86. ССБТ «Методы измерения шума на рабочих местах».

    В зоне постоянного пребывания людей выбирают не менее двух расчетных точек на высоте 1,5 м от уровня пола или рабочей площадки. При одном источнике шума в помещении первая расчетная точка берется на рабочем месте, при нескольких однотипных источниках - на рабочем месте в средней части помещения. Вторая расчетная точка берется в зоне постоянного пребывания людей, не связанных с работой оборудования. Если имеется несколько различных источников, отличающихся друг от друга по октавным уровням звуковой мощности более чем на 15 дБ хотя бы в одной октавной полосе, то на рабочих местах берутся две расчетные точки: у источников с максимальным и минимальным уровнями шума. Для цехов с групповым размещением однотипного оборудования расчетные точки берутся в центре каждой группы. Допустимые уровни звукового давления принимаются на основании ГОСТ 12.1.003-86, ССБТ «Шум. Общие требования безопасности».

    Определение ожидаемых уровней звукового давления в расчетных точках .

    При проведении расчетов ожидаемых уровней звукового давления в производственных помещениях наиболее часто расчетная точка находится в том же помещении, где установлен источник шума или в соседнем помещении.

    А. Расчетная точка находится в помещении с одним источником шума.

    L = L P +101g(Ф/4r 2 +4/B) (2.27)

    где L - уровень звукового давления, дБ;

    L p - уровень звуковой мощности источника шума, дБ;

    Ф - фактор направленности источника для направления в точку наблюдения;

    r-расстояние от геометрического центра источника до расчетной точки,м;

    В - постоянная помещения (определяется по графику зависимости от объема помещения), м 2 ;

    Б. Расчетная точка находится в помещении с несколькими источниками шума.

    L=10lg(іФ/4г 2 +4/Ві) (2.28)

    где i = 10 0,1 Lp і - сумма уровней звуковой мощности для i - того источника шума;

    Lpi -уровень звуковой мощности i - того источника, дБ;

    m i - число источников, находящихся в зоне прямой видимости из расчетной точки;

    п - общее число источников в помещении с учетом среднего коэффициента одновременности работы оборудования.

    В . Расчетная точка расположена в изолируемом от источников шума помещении.

    Если источники (или один источник) шума расположены в смежном с изолируемым помещении, а шум проникает в изолируемое помещение через ограждающие конструкции, то ожидаемые уровни в расчетной точке определяются по формуле:

    L = Lр.сум - 10 lg Ви + 10 lg Sorp - R - 10 lg Вш + 6, дБ (2.29)

    Lp cyм=101g Lpi (2.30)

    Lp сум - суммарный уровень звуковой мощности, излучаемый всеми источниками, находящимися в рассматриваемом шумном помещении, дБ;

    m - общее количество источников шума; (если источник шума один, m = 1, Lp сум = Lp, где Lp - уровень звуковой мощности этого источника);

    Ви, Вш - соответственно постоянные изолируемого и шумного помещений, м 2 ;

    Sorp - площадь ограждения, м 2 ;

    R-звукоизолирующая способность ограждения, через которое шум проникает в изолируемое помещение, дБ.

    R = 201gQ + 201gf-54, (2.31)

    где Q - вес 1-го м 2 ограждения заданной толщины, кг / м 2 ;

    f- частота звука, Гц.

    f rp =----------- , (2.32)

    где f г p - частота волнового совпадения, от которой звукоизолирующая способность не будет возрастать, Гц;

    с 1 - скорость распространения звуковых волн, м/с;

    h - толщина преграды, см.

    Определение требуемого снижения уровней звукового давления

    Требуемое снижение уровней звукового давления L определяется по формуле:

    L= L-L доп ()

    где L-измеренный уровень звукового давления на рабочих местах действующего предприятия, определенный в расчетных точках (см. п. 3);

    L доп -допустимые по нормам уровни звукового давления, дБ по ГОСТ 12.1.003-86. «Шум. Общие требования безопасности».

    Методы и средства коллективной и индивидуальной

    защиты от шума

    После получения требуемого снижения уровней звукового давления необходимо выбрать метод защиты от шума.

    Средства защиты от шума подразделяют на средства коллективной и индивидуальной защиты.

    Методы относительно снижения шума следует предусматривать на стадии проектирования промышленных объектов и оборудования. Снижение шума можно достичь только путем обесшумливания всего оборудования с высоким уровнем шума.

    Работу относительно обесшумливания действующего производственного оборудования в помещении начинают с составления шумовых карт и спектров шума, оборудования и производственных помещений, на основании которых выносится решение относительно направления работы.

    Борьба с шумом в источнике его возникновения – наиболее действенный способ борьбы с шумом. Создаются малошумные механические передачи, разрабатываются способы снижения шума в подшипниковых узлах, вентиляторах.

    Архитектурно-планировочный аспект коллективной защиты от шума – предполагается снижение уровня шума путем использования экранов, территориальных разрывов, шумозащитных конструкций, зонирования и районирования источников и объектов защиты, защитных полос озеленения.

    Организационно-технические средства защиты от шума связаны с изучением процессов шумообразования промышленных установок и агрегатов, транспортных машин, технологического и инженерного оборудования, а также с разработкой более совершенных малошумных конструкторских решений, норм предельно допустимых уровней шума станков, агрегатов, транспортных средств и т.д.

    Акустические средства защиты от шума подразделяются на средства звукоизоляции, звукопоглощения и глушители шума.

    Снижение шума звукоизоляцией. Суть этого метода заключается в том, что шумоизлучающий объект или несколько наиболее шумных объектов располагаются отдельно, изолировано от основного, менее шумного помещения звукоизолированной стеной или перегородкой. Звукоизоляция также достигается путем расположения наиболее шумного объекта в отдельной кабине. Звукоизоляция достигается также путем расположения оператора в специальной кабине, откуда он наблюдает и руководит технологическим процессом. Звукоизолирующий эффект обеспечивается также установлением экранов и колпаков, что защищает рабочее место и человека от непосредственного влияния прямого звука.

    Звукопоглощение достигается за счет перехода колебательной энергии в теплоту вследствие потерь на трение в звукопоглотителе. Звукопоглощающие материалы и конструкции предназначены для поглощения звука как в помещениях с источником, так и в соседних помещениях. Звукопоглощение используется при акустической обработке помещений.

    Акустическая обработка помещения предусматривает покрытие потолка и верхней части стен звукопоглощающим материалом. Дополнительно к потолку могут подвешиваться звукопоглощающие щиты, конусы, кубы; устанавливаются резонаторные экраны, т.е. искусственные поглотители. Эффект акустической обработки больше в низких помещениях (где высота не превышает 6м). Акустическая обработка позволяет снизить шум на 8 дБА.

    Уровень звука после применения звукопоглощающей облицовки рассчитывают по формуле:

    L=10, (2.32)

    где В – постоянная помещения, м 2 ;

    В 1 – постоянная помещения после акустической обработки, м 2 .

    В 1 =
    , (2.33)

    Где А 1 – эквивалентная площадь звукопоглощения поверхностями не занятыми звукопоглощающей облицовкой;

    - добавочное звукопоглощение, вносимое звукопоглощающей облицовкой;

    А 1 =(S-S обл) – эквивалентная площадь звукопоглощения поверхностями не занятыми звукопоглощающей облицовкой;

    - средний коэффициент звукопоглощения акустически обработанного помещения.

    = S обл обл, (2.34)

    S обл – площадь звукопоглощения облицовки;

    обл – реверберационный коэффициент звукопоглощающей облицовки.

    А 1 =В ш S/ В ш +S, (2.35)

    S – общая площадь всех поверхностей помещения

    =А 1
    /S (2.36)



     

    Возможно, будет полезно почитать: